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The  paper  p r e s e n t s  the boundar y  cond i t i ons  o f  a t empera ture -  and  c o n c e n t r a t i o n - i n h o m o g e n e o u s  

mul t i component  gas f low past  a slightly curved nonspherical surface in the presence o f  slow evaporation and 

condensat ion processes. 

To correctly describe the behavior of moderately large volatile aerosol particles in temperature- and 

concentration-inhomogeneous multicomponent gas mixtures one should know the boundary conditions on their 

surface. Under real conditions aerosol particles have, as a rule, a nonspherical shape. At present, boundary 

conditions are known only for nonvolatile aerosol particles of an arbitrary shape [ 11, whereas for moderately large 

volatile nonspherical aerosol particles they are, probably, absent in literature. 

In what follows, jumps of temperature and concentration and sliding velocity for moderately large aerosol 

particles in a temperature- and concentration-inhomogeneous multicomponent gas mixture are calculated by the 

method of semispatial momenta for the case of slow evaporation. The boundary conditions are obtained for normal 

components of molecule and energy fluxes. Thus, a complete system of boundary conditions is given which allows 

one to fully describe motion and evaporation (or condensation growth) of moderately large volatile aerosol particles 
of an arbitrary shape. 

1. We consider a flow of an N-component gas near a phase interface the temperature of which is T 0. We 

assume that the minimum radius of the surface curvature Rmin is such that the following relation holds: 

0.01 < Kn < 0.3, where Kn = ~-/Rmin is the Knudsen number; 2 is the mean free path of gas molecules. Let M 

components, M < N, undergo phase transition on this surface. Gradients of the gas temperature and concentrations 

of components are given at a large distance from the surface. We introduce the following notation: fi, mi, vi, wi = 

q m i / 2 k T o v  i, c i, nio are the distribution function, mass, velocity and reduced velocity of molecules, relative 

concentration and concentration of saturated vapors of the i-th component at a temperature TO, respectively. 

We select a curvilinear orthogonal system of coordinates such that one of the coordinate surfaces coincides 

with the particle surface. We designate the coordinate which is perpendicular to the surface as xn (the surface itself 

is prescribed by the equation xn = xno) and the remaining two as X-rl and xrz. 

2. To describe a rarefied gas flow near a surface of an arbitrary shape one should solve the Boltzmann 
equation in the curvilinear coordinates [2 ] 
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where J is the collision integral [2 ]; Hn, HTI, HT2 are the Lam6 coefficients. We assume the gas state to be close 

to equilibrium, then the functions of gas distribution over velocities can be expanded near  local Maxwell distribution 

functions/io:  

/i = & (1 + ~,~), 

where rio = n i (mi /2arkTo)  3:2 exp (-w~).  Functions 7, i can be presented as e(m / 
~o i = ~n i - S 1 / 2 ~ 7 '  + 2whiG n + 2 (W~liGlr I + w~2tGT2) + CEi  + ~0iB 4- ~i-+ , (2) 

where ~n~ = (ni(xn = xno) -- n io) /n io  and d T  = ( T ( x  n = xno ) -- T o ) / T  0 are temperature and concentration jumps; G 

= q m N / 2 k T o U ;  U is the mean-mass velocity of gas mixture flow; G~ is the reduced velocity of gas mixture sliding; 

Gn is the normal component of the reduced mean-mass velocity of the mixture G. The value of Gn can be found 

f rom the  c o n d i t i o n  of  nonf low of molecules  of the  N- th  componen t  th rough  the phase  in te r face :  Gn = 

- l / 2 h i m o V n W / .  The function ~ c E  is called the C h a p m a n - E n s k o g  function [3 ]. It can be written as 

B i ( w i )  ( i i 1 ) Oua 
C E  (Vi) = W ih~i(wi) V q Ij + ~, rt---~l W a wfl - ~ W '2 OXfl ' 

where ffi(wi) are thermal  and  diffusion functions; Di(w i) are viscous functions [4 ]: 

0 v~O h i (wi) = a i (wi) for j = 0 ,  = grad (In T) for j = 0 ,  

l~i(wi) = 4 ( w i )  for j # 0 ,  V t t / = g r a d c j  for j # 0 .  

Then in expansion of functions ~(w/) in terms of Sonin polynomials we retain two terms, and in expansion of 

viscous function Bi (w  i) we retain one term: 

1 

~i (Wi) ~ ~ 4. $3/2/4/1, Bi (wi) ~ bio" 

Function ~pB entering Eq. (2) is the Barnett distribution function. Since the velocity of Barnett slipping has l 

an order  of Kn as compared to the velocity of thermal and diffusion slipping, then in the calculation of ~O/B the 

effects caused by surface curvature can be neglected. Therefore,  the Barnett distribution function ~v/a can be 
presented as 

In accordance with the method of semispatial momenta the functions + ~  describing the effect of the phase interface 

on the gas are expanded into a series in terms of semispatial polynomials of velocity. They can be presented in the 
form of the following sum 

+ + + + (3) 

where 

+ l -  i +:, = X + + b, sign wn); 
l 
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= rli ( a i l +  ail sign Wn) ; 
l 

+ l- i 
O ~ i  = ~,  P~02i (a l ;  + ai2 sign w~). 

1 

In the expansion of functions O~i we restrict ourselves to the terms responsible for the laws of conservation 

of mass, momentum and energy, and in the expansion of functions ~ i  to the terms describing the process of 
momentum transfer [ 1 ]. The following set of velocity polynomials 

p(O) 1 P([ ) p(2) l 
nt = ' --nt = Wni , --m = $ 3 / 2 '  

p(O) o(1) 
rki = W, ki , "rki = WniWrki , k = 1, 2 .  

corresponds to this choice. 

3. Having substituted distributions (2) into formula (1), we obtain the following equation with respect to 
functions q)~ 
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where I0{~.  ~ + 0 ; )  is the linearized Boltzmann integral of collisions. 
M u l t i p l y i n g  s e q u e n t i a l l y  r e l a t i o n  (4) by (1 _+ sign wni), Wni(1 +_ sign Wni), sL-2(1 _+ sign Wni), 

w~li(1 + sign Wni), Wr +_ sign Wni), wr + sign Wni), w,2iWni(1 +_ sign Wni ) and integrating over the entire 
range of velocities, we obtain a system of linear homogeneous differential equations for the coefficients of expansion 

l_+ l_+ b i , aik which is not given here since it is very cumbersome. 

The obtained system of equations can be solved by the method of successive approximations by the 
Knudsen number [5, 6 ]. This solution, with allowance for the requirement that at large distances from the liquid 

surface the distribution functions of molecules become Chapman distribution functions, has the following form 

] 

l• l+ ~ 1+ 
aik = ~ Ajk (X~l, x~2 ) (aik ] + eCtik ] ) exp (-- CSmlX -- eCSm2X ) + 

J 

1 OB] l+_ 
+ e X H~k OXrk Ixi] exp (-- 7] x) .  

1 
(6) 
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l• l + Substituting relations (5), (6) into the equations for b i , aik o[ the abovementioned system of differential 
l+_ l+_ equations, we obtain a system of linear homogeneous algebraic equations with respect to the coefficients aik], f16 ' 

l• and i~ii .  From the condition that the determinant of this system be equal to zero we find all 7i; then we can calculate 
l• l_ + l• the quantities Ctikj, fill , and/~ij �9 

4. The coefficients Bj(x.rl, xr2) and Aik(x.rt, xr2) and jumps are determined from the kinetic boundary 

conditions, which can be found by the Maxwell boundary conditions 

f ;  (Wni, VT:li, vt2i) = / i '  + f i ' ,  f / =  cti f/0, (7) 

fi" = (1 - a ~  ) (qtifis + (1 - qti) f i -  (-- Vxi, Vyi, Vzi)) " 

Here qti is the coefficient of accommodation of the tangential component of momentum, a F is the coefficient of 
condensation, 

( m, I"' ( 

his, Tis are macroparameters characterizing molecules diffusely reflected from the surface. Substituting distribution 
2 S h w n i ,  i i2 functions (2) into Eq. (7), multiplying successively the obtained expressions by Wni, Wni, W~kiWni , W~kW n 

and integrating with respect to the positive halfspace of velocities, we obtain a system of momentum kinetic 

equations. Combining it with the conditions of nonflow of the nonreacting portion of the flow of molecules of the 

i-th component and the conditions of energy accommodation [7 ] 

(I - a~ ) :~- + :i = o, (8) 

(l -a; ) Q:, + QI 
<~T~ = (i - <,~ ) 0.:, + Q',,i 

(9) 

we have a system of linear algebraic equations the solution of which yields the determination of all the unknowns: 

~ = arJ v.vJ, (,o) 

d. 0 ~  
_ _  + G~ k Vn,rkqg (I1) 

+ Kn~ HnH~ k OXnOXr k 

Coefficients G~T k describe thermal, G/~k, j ~ 0 diffusion, Gn,~k isothermal, and G~ Barnett slipping. The 

presence of coefficients C,J~k and GJ n is caused by the curvature of the surface streamlined by the gas flow. 

The analysis conducted shows that in general the coefficients of temperature jumps depend not only on 

the coefficients at" and the coefficients of energy accommodation aTi, which characterize the velocity of evaporation 

(condensation) and normal heat fluxes, respectively, but also on the coefficients of momentum accommodation 

qri, characterizing the flows tangential to the particle surface. In turn, the coefficients of slipping depend not only 

on q~i, but also on a~- and aTi. 
We note that in the considered approximation jumps of temperature and concentration are independent of 

the slipping velocity. The coefficients of slipping can be calculated only when the jumps are determined, the 
allowance for which makes corrections of the order of the local Knudsen number Kn to these coefficients. 
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The  results obtained at present  are most general. They  make it possible to est imate the effect of phase 

conversions on the velocity of slipping of a gas mixture. The  results of [1 ] can be found by formula (11) in the 

limiting case of the absence of evaporation (a;- - ,  0) at N = 2. 

5. We now find the boundary  conditions for normal mass and energy fluxes. We write the law of mass 

conservation in a differential  form. In a gas volume (including the Knudsen layer) we have 

div U i = O, (12) 

where Ui is the total macroscopic velocity of motion of the i-th component  of the gas mixture,  which is the sum of 

the hydrodynamic  velocity ui and the mean-mass  velocity of gas flow in the Knudsen layer  vi, which is the correction 

to ui caused by the difference of the distribution function in the Knudsen layer  from the volumetric one 

U i = u i + v i , 

vi = ~i n--~ [ m i } : fiO ~p-f- wi d3vi " 

It is evident that  v i -* 0 when r - ,  oo. 

Since u i satisfies Eq. (12), then the following relation holds for v i 

(13) 

d i v  v i = 0 ,  ( 1 4 )  

Integrating this expression with respect to the volume element of the Knudsen layer,  we obtain 

d 
H~lH,;zv,ilx =xn o = _ f ~ (H"H~2V':li) dxn - f OXx--~2 (Hnn~lv~2i) dx n �9 (IS) 

It follows from (13) that 

uni t xn=xno = Uni - vni [ xn=xno , 

when Un = q2kTo/mNGn is the mean-mass  velocity of gas flow. 

Having calculated vTki and  substi tuted the obtained expressions into (15), we finally have for the normal 

component  of the velocity of the i-th component  of the mixture: 

G i -  2 W 

e( l o .  . 1)1 + aki dxn.  (16) 
2vr-~ 

We note that due to the smallness of the Knudsen number  in calculating the velocity V~rki it is sufficient to 

take the distribution function O~ calculated for a plane surface. 

Similarly we can obtain an expression for the normal component  of the heat  flux 

O,,= (kTo)3/2g h,O- 1 - -  

ik OXx~ k 

H,~H, IH,2 3a)k" 
aiOk + + d x  n . 07) 
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