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BOUNDARY CONDITIONS IN A MULTICOMPONENT
GAS MIXTURE FLOW PAST A VOLATILE
NONSPHERICAL SURFACE AT KNUDSEN NUMBERS
0.01 AND 0.3

E. I. Alekhin UDC 533.72

The paper presents the boundary conditions of a temperature- and concentration-inhomogeneous
multicomponent gas flow past a slightly curved nonspherical surface in the presence of slow evaporation and
condensation processes.

To correctly describe the behavior of moderately large volatile aerosol particles in temperature- and
concentration-inhomogeneous multicomponent gas mixtures one should know the boundary conditions on their
surface. Under real conditions aerosol particles have, as a rule, a nonspherical shape. At present, boundary
conditions are known only for nonvolatile aerosol particles of an arbitrary shape [1], whereas for moderately large
volatile nonspherical aerosol particles they are, probably, absent in literature.

In what follows, jumps of temperature and concentration and sliding velocity for moderately large aerosol
particles in a temperature- and concentration-inhomogeneous multicomponent gas mixture are calculated by the
method of semispatial momenta for the case of slow evaporation. The boundary conditions are obtained for normal
components of molecule and energy fluxes. Thus, a complete system of boundary conditions is given which allows
one to fully describe motion and evaporation (or condensation growth) of moderately large volatile aerosol particles
of an arbitrary shape.

1. We consider a flow of an N-component gas near a phase interface the temperature of which is Tg. We
assume that the minimum radius of the surface curvature Rpi, is such that the following relation holds:
0.01 < Kn < 0.3, where Kn = A/Rp, is the Knudsen number; A is the mean free path of gas molecules. Let M
components, M < N, undergo phase transition on this surface. Gradients of the gas temperature and concentrations
of components are given at a large distance from the surface. We introduce the following notation: f;, m;, v;, W; =
V'm;72kTyv;, c;, ng are the distribution function, mass, velocity and reduced velocity of molecules, relative
concentration and concentration of saturated vapors of the i-th component at a temperature T, respectively.

We select a curvilinear orthogonal system of coordinates such that one of the coordinate surfaces coincides
with the particle surface. We designate the coordinate which is perpendicular to the surface as x, (the surface itself
is prescribed by the equation x, = x,0) and the remaining two as x;; and x;3.

2. To describe a rarefied gas flow near a surface of an arbitrary shape one should solve the Boltzmann
equation in the curvilinear coordinates [2]
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where J is the collision integral [2]; H,, Hyy, H,; are the Lame coefficients. We assume the gas state to be close
to equilibrium, then the functions of gas distribution over velocities can be expanded near local Maxwell distribution
functions fy:
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where fig = ni(m;/ anTo)n exp (—wiz). Functions ¢; can be presented as
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where dn; = (ni(x, = Xno) — nip)/ nig and 8T = (T(x, = x,0) — To)/ T are temperature and concentration jumps; G

=Vmy/2kToU; U is the mean-mass velocity of gas mixture flow; G, is the reduced velocity of gas mixture sliding;
Gy, is the normal component of the reduced mean-mass velocity of the mixture G. The value of G, can be found
from the condition of nonflow of molecules of the N-th component through the phase interface: G, =
-1/ ZH)VOV,}I”'. The function llll-CE is called the Chapman~Enskog function [3]. It can be written as
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where ft{:(w,-) are thermal and diffusion functions; D;(w;) are viscous functions {4 ]:
h? (wp) =a;(wy for j=0, vel = grad (InT) for j=0,
H(w)=d,(w) for j=0, V¥ =gradg for j=0.

Then in expansion of functions A{(w;) in terms of Sonin polynomials we retain two terms, and in expansion of
viscous function B;(w;) we retain one term:
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Function tp? entering Eq. (2) is the Barnett distribution function. Since the velocity of Barnett slipping has
an order of Kn as compared to the velocity of thermal and diffusion slipping, then in the calculation of 1/}? the
effects caused by surface curvature can be neglected. Therefore, the Barnett distribution function W? can be
presented as
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In accordance with the method of semispatial momenta the functions CDf describing the effect of the phase interface
on the gas are expanded into a series in terms of semispatial polynomials of velocity. They can be presented in the
form of the following sum
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In the expansion of functions ®}; we restrict ourselves to the terms responsible for the laws of conservation

of mass, momentum and energy, and in the expansion of functions CD,l;“- to the terms describing the process of
momentum transfer {1]. The following set of velocity polynomials
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corresponds to this choice.
3. Having substituted distributions (2) into formula (1), we obtain the following equation with respect to
functions ®;°
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where [;{®]" + <I>ji) is the linearized Boltzmann integral of collisions.

Multiplying sequentially relation (4) by (1 =* signwp), wy(l + sign wy), Sl/z(l + sign wy),
wrpi(l £ sign wy;), wiwni(1 £ sign wy), wii(1 % sign wy;), weaiwy(1 * sign wy;) and integrating over the entire

range of velocities, we obtain a system of linear homogeneous differential equations for the coefficients of expansion
bl+, alk which is not given here since it is very cumbersome.

The obtained system of equations can be solved by the method of successive approximations by the
Knudsen number [5, 6 ]. This solution, with allowance for the requirement that at large distances from the liquid
surface the distribution functions of molecules become Chapman distribution functions, has the following form
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Substituting relations (5), (6) into the equations for bfi, af,:—' of ihc abovementioned system of differential
equations, we obtain a system of linear homogeneous algebraic equations with respect to the coefficients af.,fj, ﬁfjt,
and ,uff From the condition that the determinant of this system be equal to zero we find all ¥); then we can calculate
the quantities aé,‘fj, ﬂff, and yff

4. The coefficients By(x;1, x;2) and Aju(x;|, x;3) and jumps are determined from the kinetic boundary
conditions, which can be found by the Maxwell boundary conditions
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Here gy is the coefficient of accommodation of the tangential component of momentum, a; is the coefficient of
condensation,
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nis, Tis are macroparameters characterizing molecules diffusely reflected from the surface. Substituting distribution
functions (2) into Eq. (7), multiplying successively the obtained expressions by w;, w,zli, S;}nwm-, WekiWnis wikwilz
and integrating with respect to the positive halfspace of velocities, we obtain a system of momentum kinetic
equations. Combining it with the conditions of nonflow of the nonreacting portion of the flow of molecules of the
i-th component and the conditions of energy accommodation [7]
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we have a system of linear algebraic equations the solution of which yields the determination of all the unknowns:
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Coefficients G?k describe thermal, Gﬁ,v j # 0 diffusion, G isothermal, and GE Barnett slipping. The
presence of coefficients G{k and G’,; is caused by the curvature of the surface streamlired by the gas flow.

The analysis conducted shows that in general the coefficients of temperature jumps depend not only on
the coefficients a;” and the coefficients of energy accommodation ar;, which characterize the velocity of evaporation
(condensation) and normal heat fluxes, respectively, but also on the coefficients of momentum accommodation
¢i, characterizing the flows tangential to the particle surface. In turn, the coefficients of slipping depend not only
on ¢y, but also on a; and ar;.

We note that in the considered approximation jumps of temperature and concentration are independent of
the slipping velocity. The coefficients of slipping can be calculated only when the jumps are determined, the
allowance for which makes corrections of the order of the local Knudsen number Kn to these coefficients.
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The results obtained at present are most general. They make it possible to estimate the effect of phase
conversions on the velocity of slipping of a gas mixture. The results of [1] can be found by formula (11) in the
limiting case of the absence of evaporation (@; - 0) at N = 2.

5. We now find the boundary conditions for normal mass and energy fluxes. We write the law of mass
conservation in a differential form. In a gas volume (including the Knudsen layer) we have

divU; =0, (12)

where U; is the total macroscopic velocity of motion of the i-th component of the gas mixture, which is the sum of
the hydrodynamic velocity u; and the mean-mass velocity of gas flow in the Knudsen layer v;, which is the correction
to u; caused by the difference of the distribution function in the Knudsen layer from the volumetric one

U=u+v,
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It is evident that v; » 0 when r » .
Since u; satisfies Eq. (12), then the following relation holds for v;

divv,=0, (14)

Integrating this expression with respect to the volume element of the Knudsen layer, we obtain
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It follows from (13) that
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ni
when U, = V2kT,/mnG, is the mean-mass velocity of gas flow.
Having calculated v,; and substituted the obtained expressions into (15), we finally have for the normal
component of the velocity of the i-th component of the mixture:
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We note that due to the smallness of the Knudsen number in calculating the velocity vy, it is sufficient to
take the distribution function ®;" calculated for a plane surface.
Similarly we can obtain an expression for the normal component of the heat flux
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